
1

AOS 452 – Lab 9 Handout
Automated Plot Generation

INTRODUCTION
The command that is new to this lab is crontab. Crontab allows one to run scripts automatically
without having to be at the computer terminal to execute them. The commands needed to run the
scripts are stored in a special crontab file. The UNIX system utility cron reads the crontab file and runs
the specified commands.

The process of automatically creating web-accessible GEMPAK plots consists of four steps:

1. Prepare the script(s) (Lab 8, with some twists)
2. Prepare the crontab file (new)
3. Load the crontab file into the cron utility (new)
4. Code up some HTML to point to the generated plots (Lab 7)

STEP 1: PREPARING THE SCRIPT
Before using crontab to run a script, you’ll need to add a few extra lines of text to your script. These
lines go between #!/bin/csh –f and the line on which you specify what GEMPAK program you
wish to run first (e.g., gdplot << EOF).

First, you need to let the cron utility know the location of all the executables (programs, etc.) you
intend to run in the script. To do this, enter the following as the second line in your script:

source ~yourusername/.tcshrc

Next, you need to change into the directory in which the cron utility should be working. This could be,
for example, your home directory, or your public_html directory. For the purposes of this lab, you’ll
want to move into your public_html directory. Any plots created by your script will appear in this
directory. (Tip: typing pwd into a fresh terminal window will give you the appropriate path for the
directory you are in.) You can change to the appropriate location by adding a line similar to the
following to your script:

cd /ef5/raid6/class/fall16/yourusername/public_html

Finally, remember to always include gpend at the end of your scripts. System crashes have occurred in
the past when people have failed to put gpend in scripts that they have used with crontabs.

Here’s an example. Let’s say you wanted to produce a GIF image with a white background of 12-hour
forecasted 500-mb geopotential height from the 18Z 4 October 2017 GFS model run using a crontab.
To do this, you could produce a script called, say, crontabtest.csh that looks similar to the following:

#!/bin/csh –f

source ~username/.tcshrc
cd /ef5/raid6/class/fall16/username/public_html

2

#This next section specifies that the file should be created with a white background

gpcolor << EOF1
DEVICE = gif|500mbhght.gif
COLORS = 101 = 255:255:255

run

exit
EOF1

gdplot << EOF
 GDFILE = /weather/data/gemdata/hds/17100418_avn003.gem
 GDATTIM = f12
 GLEVEL = 500
 GVCORD = pres
 PANEL = 0
 SKIP =
 SCALE = 0
 GFUNC = hght
 CTYPE = c
 CONTUR = 3/1
 CINT = 60
 LINE =3/1/2/1
 GVECT =
 WIND =
 TITLE = 1/-2/@ heights(m) valid ~
 TEXT = 0.8
 CLEAR = y
 GAREA = top--
 PROJ = utm
 MAP = 8/1
 DEVICE = gif|500mbhght.gif (same gif file specified above for gpcolor)

run

exit

EOF
gpend

Details that you have to get right when preparing the script

A) You must have source and cd on separate lines. The script will not run correctly (if at all) if this

is not done correctly.

B) The script you plan to run in a crontab must be an executable file. Recall that you can make scripts

executable by entering the following at a UNIX prompt:

3

chmod 700 crontabtest.csh

To confirm that your script is executable, type ls -l (for “long” listing) at the UNIX prompt.
You’ll see something similar to this:

-rwx------. 1 mmmadsen fall12 966 Oct 6 11:04 crontabtest.csh

The first chunk of text lists the permissions of each file in the directory. The script is executable
if there is an x in the fourth space from the left. Otherwise, it is not executable. In this case,
crontabtest.csh is executable. Depending on your account settings, an asterisk (*) may appear
after the filename; this also indicates the file is executable.

C) Make sure the first line of the script is #!/bin/csh –f so that UNIX can tell the file is a C-shell

script.

D) If you wish to make GIF images with your script (to post on your website), you must use

device=gif|filename.gif as shown in the example. Using device=gf will not work when
your script is run by the cron utility, although it works fine otherwise. You can view your images
with the xv command instead of ghostview (ggv), as well.

E) Make sure your script is working properly before moving on to Step 2. Also, delete any files (e.g.,

GIF images) that were created during your testing so the crontab can start fresh.

STEP 2: PREPARING THE CRONTAB FILE
Now that you have the script fully prepared, you can prepare the crontab file. Note that the crontab
file is not the same thing as your script file(s). The contents of the crontab file should follow this
general format:

A B C D E /ef5/raid6/class/fall16/username/crontabtest.csh > /ef5/raid6/class/fall16/username/crontabtest.out 2>&1

 1 2 3a 3b 3c

So what does this mean? Follow along on the next page to see what groups 1, 2, 3a, 3b, and 3c mean.

Group:

1) Time to run script
 A Minute (0–59)
 B Hour (0–23)
 C Day of Month (1–31)
 D Month (1–12)
 E Day of Week (0–6, where 0 = Sunday, 1 = Monday, etc.)

When an asterisk appears in a field instead of a number, the cron utility interprets that as a wild
card for all possible values. You must have spaces between A and B, B and C, etc.

Examples
0 3 16 10 2 Run at 3:00 AM on Tuesday, October 16 (This would be about once every seven years)

4

0 16 16 * * Run at 4:00 PM on the 16th of every month, regardless of which day of the week it is
15 2 * * * Run at 2:15 AM every day
30 20 * * 3 Run at 8:30 PM every Wednesday, regardless of the date
30 20 * * 2,4 Run at 8:30 PM every Tuesday and Thursday, regardless of the date

2) Which script to run --- In this position, you list the full pathname of the script you wish to

have the cron utility run.

3) Output redirection --- To help with debugging, you’ll want to produce an output file

containing all program and error messages that occur while the script is running. This part of
your crontab file sets up such a file for output.

a) Output redirection symbol
 The > symbol tells cron that output should be redirected to a particular location or file.

b) Output file
 The full pathname of the output file must be given to the right of the output redirection

symbol. Text generated by the program(s) run in the script will be written into this file.
Although you can name this file whatever you want, I suggest using the same name as your
script, but with a .out extension, so that you can easily find it.

c) Error message redirection
 The character sequence 2>&1 tells cron to redirect error messages to the output file specified

in 3b as well.

As an example, let’s say you want to run the script crontabtest.csh using crontab. You could create a
crontab file named crontabtest.cron that looks like the following: (Unless you have crontabtest.csh in
another location)

50 14 * * * /ef5/raid6/class/fall14/username/crontabtest.csh > /ef5/raid6/class/fall16/username/crontabtest.out 2>&1

50 14 * * * Run at 2:50 PM every day

/ef5/raid6/class/fall16/username/crontabtest.csh Run the file crontabtest.csh located in the
 /ef5/raid6/class/fall14/username directory

> Redirect the output

/ef5/raid6/class/fall16/username/crontabtest.out Text output by the program(s) run by the script

crontabtest.csh will be written into a file named
crontabtest.out in the /ef5/raid6/class/fall16/
username directory

2>&1 Error messages produced during the execution
of the crontab will be written into the same
output file as above

5

Details that you have to get right when preparing the crontab file

A) You must have at least one space between each field in the crontab file.

B) The text for each crontab entry must be on one line. If it is more than one line, cron will fail to read

lines two through whatever. The word wrap feature of gedit may cause some of your command line
to be written on a second line, so turn it off using the Preferences menu. You can also make your
gedit window very wide.

C) You can save your crontab file with any name. However, it may be wise to use a .cron extension

so you can easily identify the file as a crontab file when you look through your directories in the
future.

STEP 3: LOADING THE CRONTAB FILE

Now that you have an executable script and a corresponding crontab file ready, you can load the
crontab file into the cron utility.

Loading the crontab file is as simple as typing crontab name_of_file.cron, where
name_of_file.cron is the name of the crontab file, not the name of your script.

To verify that your crontab file is loaded, type crontab –l (the letter). If you wish to unload your
crontab file from the cron utility, type crontab -r

NOTE: Each computer in the classroom is running its own cron utility. Thus, if you load a crontab file
while logged into luis, log out, and then log into ivan, typing crontab -l will not show anything. If
you wanted to see your crontab or remove it, you’d have to log back into luis. So, remember which
machine you are logged into when you are loading a crontab file!

FURTHER NOTE: Since the cron utility only runs in Linux, any crontab file you have loaded on the
machines in 1411 will only run if that machine is running Linux at the time your job is scheduled to
run. Thus, if you have a vital script that must run on schedule (e.g., something for your weather
discussion), you should log into cat5 before loading your crontab file, since cat5 is never rebooted into
Windows. To do this from a terminal window on a 1411 machine, type:

ssh -Y username@cat5.aos.wisc.edu
Enter your password when prompted and then follow the instructions below.

As an example, let’s say you wanted to load the crontab file crontabtest.cron from above. The loading
procedure would go as follows:

1) Type crontab crontabtest.cron
2) To see if crontabtest.cron has been properly loaded, type crontab –l. You will see the

following on the screen:
50 14 * * * /ef5/raid6/class/fall16/username/crontabtest.csh > /ef5/raid6/class/fall16/username/crontabtest.out 2>&1

You would want to load the crontab file before 2:49 PM to be assured that the cron utility reads
your commands in time.

6

3) If you wanted to unload the crontab file from the cron utility, you would type crontab –r.

Details that you have to get right when loading the crontab file

A) If the text for each crontab command is not on one line, an error message saying the commands in

the crontab cannot be recognized will appear when you try loading the crontab file into the cron
utility.

B) If you are testing a crontab file, make sure that you load it at least 60 seconds before the execution

time listed in the crontab file. To see the current time, type date into a terminal.

TROUBLESHOOTING: AFTER THE CRONTAB IS EXECUTED

About 30–60 seconds after the scheduled time for the execution of your crontab, you should find an
output file and whatever files you created from the script (PostScript, GIF, etc.) in the directory(ies)
you specified. (Recall that the output file is specified in the crontab file, but the GIF or PostScript files
are specified in the C-shell script.)

If the output and other files are not present:

1) Check the time in your crontab file and on the machine. You may have been too late when
loading the crontab, or the time has not yet been reached when the crontab is programmed to
run.

2) Your script may not be executable. Did you use the chmod command on your script?
3) You may be looking in the wrong directory. Type pwd at the prompt to see in which directory
you are currently located. Check your crontab file and script to see in which directory(ies) your
files should be located.

If the output file is present, but not the PostScript or GIF file(s):

1) View your output file using gedit. You may find one or more error messages in the window.
Here are some examples:

a. Cannot execute (This means you need to make your script executable.)
b. Command not found [This means your script has syntax errors. Do you neglect to use

proper spaces (e.g., cd/ef5/… instead of cd /ef5/…)? Perhaps you have some bad
commands in your script (e.g., gdcontour instead of gdcntr).]

If all files are present in the directory, but the PostScript or GIF image looks strange:

1) Check your script for errors. It is highly recommended that you run your script yourself before
running it in a crontab to assure yourself that any plotting irregularities are not due to errors in
the script.

2) Sometimes images can come out strange if your crontab is run at exactly the same time as
another person’s crontab on the same machine.

7

If the crontab does not run properly, delete all files created from the erroneous run. After deleting the
files, make the necessary changes to the crontab file and/or script. After the changes are completed,
reload the crontab file.

RUNNING MULTIPLE CRONTAB COMMANDS

Only one crontab file (e.g., crontabtest.cron) can be loaded into the cron utility per user. However, the
file can contain more than one command. Let’s say you wanted to run three example files, hght500.csh
at 6:00 AM, sfcpres.csh at 2:00 PM, and absvort.csh at 5:30 PM everyday. The crontab file would look
something like this:

0 6 * * * /ef5/raid6/class/fall16/username/hght500.csh > /ef5/raid6/class/fall16/username/hght500.out 2>&1
0 14 * * * /ef5/raid6/class/fall16/username/sfcpres.csh > /ef5/raid6/class/fall16/username/sfcpres.out 2>&1
30 17 * * * /ef5/raid6/class/fall16/username/absvort.csh > /ef5/raid6/class/fall16/username/absvort.out 2>&1

These three commands will be run at the specified times when the crontab file containing these
commands is loaded into the cron utility.

If a crontab runs that generates files with the same name as files already in existence in your directory,
the old files will be overwritten, except for GIF files. For instance, say you run crontabtest.csh on
three days. That script is designed to create a GIF image called 500mbhght.gif. A listing of the files in
the directory after the script runs for three days would show one output file (hght500.out) and three
GIF files (500mbhght.gif, 500mbhght.gif.1, and 500mbhght.gif.2).

There may be situations where you want to run a script every day, but you only want the GIF image
from the most recent run of the script in your directory. Such a task can be easily accomplished by
adding another line to the .csh file. That line should tell the script to remove the old file before a new
file with the same name is created. For example, you may want to remove the version of 500mbhght.gif
created yesterday before you run crontabtest.csh today. As such add the following line to
crontabtest.csh:

#!/bin/csh –f

source ~username/.tcshrc
cd /ef5/raid6/class/fall16/username
rm 500mbhght.gif

This process of removing old files before creating new files will be very useful when working with
images on your web pages.

STEP 4: CODING UP THE HTML

This step simply entails adding an appropriate set of <a> tags to your HTML. For the example we’ve
been looking at so far, this would be something like 500-mb
heights. See	Lab	7	for	more	details.	

